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The effect of the course of GIl (x 1) in binary systems is studied on the binodal curve shape, the 
extent of heterogeneous region and the inclination of tie-lines in the ternary system. The effect 
of individual quantities is shown both on model calculations and on the systems acetonitriIe­
-benzene-n-heptane, water-benzene-ethanol and water-benzene-2-propanol. The UNIQUAC 
and the modified Wilson equations were employed for calculating. 

Phase splitting of a system into two or more liquid phases is conditioned by a certain 
degree of non-ideality whose quantitative measure in a binary system is the' second 
derivative of Gibbs' energy with respect to composition 1, i.e. 

(1) 

In homogeneous systems in the entire concentration range, the condition2 
- 5 

Gll > 0 (2) 

must hold. In heterogeneous systems in a certain concentration range (in so-called 
labile region), the condition (2) is not fulfilled. 

In case of multicomponent systems it is necessary to take a quantity D as a quanti­
tative measure of deviations from ideality, where 

Gll G12 

D = G12 G22 

G1(N - 1) 
G2(N - 1) 

G1(N - 1) ... G(N - 1) (N - 1) 

(3) 

* Part XCI in the series Liquid-Vapour Equilibrium; Part XC: This Journal 46, 2989 
(1981). 
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For a homogeneous system it must again hold2
-

4 in the entire concentration range 

D> 0, (4) 

whereas in a heterogeneous system the condition (4) is not fulfilled in a certain con­
centration range. 

To be able to carry out qualified predictions of the non-ideality of multicompo­
nent systems (and so also the liquid-liquid equilibrium) on the basis of binary data, 
it is necessary that the deviations from ideality of the every binary systems should be 
represented correctly, i.e. the course of Gll(x1) should be represented quantitatively, 
especially in the vicinity of its minimum. As it has been shown previously6,7, on 
usual evaluating the correlation equation parameters we" obtain such a set of para­
meters which give more or less shifted course of Gll(Xl). In such a case we cannot 
expect a quantitatively correct description of non-ideality even for multicomponent 
systems. Considering that the liquid-liquid equilibrium is more sensitive to small 
changes in the course of activity coefficients than the vapour-liquid equilibrium, 
it is necessary to take into account the quantitative measure of non-ideality, i.e. the 
course of Gll(x1), in evaluating the parameters. 

From this point of view it is possible to explain the relatively little success when 
predicting liquid-liquid equilibria in ternary systems on the basis of binary data only. 
Usually it is necessary to evaluate the parameters also by means of the data on com­
position of coexisting phases in ternary system8 

-11. 

In this work we should like to show the connections between the Gll(x 1) course 
of individual binary systems and the area and shape of heterogeneous region as well 
as the course of tie-lines in ternary heterogeneous system. 

Analysis of the Effect of G ll(Xl) of Binary Systems on Liquid-Liquid Equilibrium 
in the Ternary System 

The effect of G11 of binary systems On the area and shape of the heterogeneous 
region was summarized into several rules which are given below and demonstrated 
in Figs 1- 6. The figures correspond to the model computations carried out on the 
basis of the modified Wilson equation26 

3 3 

GE/(RT) = - I Xi In I XjAij + b13x 1X 3 , Aii = Ajj = 1 , (5) 
i=l j=l 

(the binary system 1-3 is assumed to be heterogeneous). The presented modification 
of the Wilson equation consists in adding the term b13XIX3 for heterogeneous binary 
systems (here just 1-3) or for those ones which are on the critical isotherm. For 
'b13 = ° we get the original Wilson equation. At b13 > ° Eq. (5) can be used also 
for the here considered heterogeneous ternary systems. 
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2 

0-5 

FIG. 1 

Effect of mutual solubility of components 
on the extent of heterogeneous region. For 
binary systems it is: (x2)O = 0'35, (Gll)xo = 
= 0·5 and b13 = 1·0. 1 x~ = 0'001, x~ = 

= 0'998; 2 x~ = 0'05, x? = 0'9; 3 x? = 0'1, 
x~ = 0'8; 4~? = 0'2, x~ = 0·6 

2 

3~------------~~----------~~ 

FIG. 3 

Effect of (Gll)xo in the binary system 1-2 
on the extent of heterogeneous region. For. 
binary systems it is: 1-2 (x2)O = 0'3; 
1-3 x~ = 0'1, x~ = 0'95, b13 = 0'6; 2-3 
(x2)O = 0'65, (Gll)xo = 2·0. 5 (Gll)xo 1-2 
= 3'0, 4 (Gll)xo,1-2 = 1, 3 (Gll)xO,1-'2 = 
= 0'5, 2 (Gll)xo 1-2 = 0'2, 1 (Gll)xo 1-2 
= 0; -. - . - criti~al curve ' 
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FIG. 2 

Effect of the parameter b13 in a binary 
heterogeneous system on the extent of hetero­
geneous region. For binary systems it is: 
(x2)O = 0'35, (Gll)xo = 1'5 and x~ = 0'001, 
x~ = 0·998. 1 b13 = 1· 5, 2 b13 = 0'8, 
3 b13 = 0'4, 4 bi3 = 0·2 

2 

FIG. 4 

Effect of (x2)O in the binary system 2-3 
on the extent of heterogeneous region. For 
binary systems it is: 1-2 (x2)O = 0'35, 
(Gll)xo = 0'5; 1-3 x~ = 0'01, x~ = 0'95, 
b13 = 0'6; 2-3 (Gll)xo = 0·5. 1 (X2)O,2-3 

= 0'2, 2 (X2)O,2-3 = 0'5,3 (X2)O,2-3 = 0'8 
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The parameters of this equation were determined in binary homogeneous systems 
on the basis of the minimum of the curve Gll(x1) (obtaimd from the experimental 
data on vapour-liquid equilibrium) by solving the syste.m of e.quations 

[82
( GM jRT)j8xi] Xl = xo = (Gll)xo,exp , 

[8 3(GM jRT)j8xnXl=XO = O. 

(6) 

In the heterogeneous binary system 1- 3, the parameters were determined on the basis 
of mutual solubility, i.e. by solving the system of equations 

alx~) = al(xi) , 

alxn = a3(Xn (7) 

for chosen values of b13 • 

The extent of heterogeneous region depends primarily on mutual solubility of 
of components in the heterogeneous binary system. The less the substances are 
mutually miscible, the larger will be the two-phase region. In Fig. 1 an example of 
four binodal curves is presented which were calculated for different mutual solubjli-

2 

0'5 
0'5 

FIG. 5 

Effect of asymmetric solubility on the inclina­
tion of tie-lines. Properties of binary systems: 
1--2 (x2)O = 0'3, (Gll)xo = 0'5; 2-3 (x2)O 
= 0'3, (Gll)xo = 0'4; 1-3 ,b l -3 = 1'0. 1 
-X? = 0'01, x? = 0'9; 2 -X? = 0'1, x? = 0'99 

2 

FIG. 6 

Course of binodal curve and'tie-lines in a sys­
tem with different values (x2 )o for homo­
geneous binary systems at their identical 
non~ideality. Properties of binary systems: 
1-2 (x2)O = 0'8, (Gll)xo = 0'2; 1-3 -X? = 

= 0'05, 'X? = 0'95, b13 = O' 5; 2-3 (x2)O = 

= 0'2, (Gll)xo = 0·2 
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ties, the properties of the homogeneous binary systtms 1-2 and 1- 3 not having 
been changed in single cases. 

The values of mutual solubility themselves Xl and Xl, however, do not determine 
th~ extent of heterogeneous region for it depends also on a hypothetical course of 
Gll(x l ) inside the heterogeneous region. The lower the valuEs Gll(x l ) will be inside 
the heterogeneous region of binary system, the larger will be the heterogeneous region 
in the ternary system. Considering that this hypothetical course in the heterogeneous. 
region cannot be found out, we are entirely dependent on model calculations. In case 
of the modified Wilson equation we can easily choose the magnitude of Gll(x l ) 

inside the heterogeneous region by the parameter b13 . The values of Gll at minimum 
are inversely proportional to the value b13 and for bl3 approaching zero the value 
of (Gll)xo will also approach zero (analogous property has a modification of the 
Wilson equation, too, proposed by Hiranumal2 and recently applied to the liquid­
-liquid equilibrium I 3 as well). In Fig. 2 we present the computations of equilibrium 
curves for different values b13 from which it is evident that the effect of bl3 is very 
expressive. It is important yet to draw attention to the fact that is is necessary, on 
using other equations, to prefer convex course of Gll(x l ) (ref. 14

). 

The extent of the heterogeneous region is as well inversely proportional to the 
values (Gll)xo in the homogeneous systems 1-2 and 2- 3. The effect of the (Gll)xo 
value increase in the systems whi:;h are at the end of miscibility. This fact is also in 
agreement with th~ analysis which was carried out for a regular solution 15. If the 
system 1- 2 occurs on the critical isotherm then the binodal curve touches the side 
of triangle corresponding to the binary system 1- 2. Several computed curves illustra-

' ting this effect are shown in Fig. 3. The curve 1 depicts the case when, also in the binary 
system 1-2, the term b12xIX2 with bl2 = 0·1 was used, whereby (Gll)xo = 0 at 
(X2)O,I-2 = 0·3 was reached. 

The effect of the Gll(xl) course in homogeneous systems is, however, closely con­
nected with the value of the minimum position, Xo. A shift of the (Gll)xo minimum 
to higher content of component 2, i.e. larger (X2)O leads to a shift of binodal curve 
towards component 2. This effect is illustrated in Fig. 4. In spite of the value (X2)O, 
having been increased from 0·2 to 0·8 in the system 2- 3, the shift of binodal curve is 
relatively small. This effect is conditioned in addition by the extent of non-ideality 
of both homogeneous systems. With more ideal systems the effect of Xo is even 
smaller. 

A considerable effect of (Gll)xo on the extent of the heterogeneous region appears. 
even in the case wh~n both homogeneous binary systems 1-2 and 2 - 3 exhibit 
practically the same non-ideality ((X2)O,I-2 = (X2)O,2-3 and (Gll)xo,I-2 = 
= (Gll)xo,2 -3)' These results contrast with the behaviour of regular solution in 
which the course of binodal curve in a similar case (b 12 = b23 = b) has not been,. 
in a certain extent of b, influenced by this value i

. 

The inclination of tie-lines is primarily influenced by the difference in non-ideality 
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of the homogeneous systems 1- 2 and 2 - 3 which is expressed quantitatively by 
the value (Gll)xo. At the same or very close values (Gll)xo, the effect of asym­
metry in solubility of substances in the binary system 1- 3 and the effect of values 
(X2)O,1-2 and (X2)O,2-3 in the binary systems become further evident. 

The tie-lines are inclined, at sufficiently large difference in (Gll)xo in the homo­
geneous systems, to the less ideal system, which is best evident in Fig. 3. In case 
of the curves 1-4, for which (Gll)xO,1-2 < (Gll)xo,2-3 holds, the tie-lines are 
inclined towards the binary system 1-2. For the curve 5 it is just the other way round 
(except the vicinity of the system 1- 3, where a different value of X o in homogeneous. 
systems plays role). 

The effect of asymmetric solubility in the binary system 1- 3 can be expressed as 
follows: Let us assume that x~ < x~ = 1 - x~, ~hich means that the substance 1 
dissolves in the substance 3 less than the substance 3 in the substance 1. This fact 
can be interpreted also in this way that the mixture is less ideal in the vicinity of 
substance 3, which manifests itself effectively in the same way as if the system 2 - 3 
were less ideal. This effect is demonstrated in Fig. 5. In case of the first curve, the 
inclination of tie-lines is larger than for the cuve 2, viz. for that reason that the 
system 2- 3 has lower value of (Gll)xo than the system 1-2 and, moreover, in this 
case the substance 1 is less soluble in the substance 3 than the substance 3 in the sub­
stance 1. For the second curve the effect of lower value of (Gll )xo in the system 2 - 3 
is partly compensated by unsymmetry in the mutual solubility but it does not suffice 
to turn over the inclination of tie-lines in spite of the difference in (Gll)xo in the 
homogeneous systems is only 0·1. 

The effect of the position of the Gll minimum of binary homogeneous systems on 
the inclination of tie-lines manifests itself as well at "small" differences in (Gll)xo 
(with mildly non-ideal systems these differences can be larger than in case of strongly 
non-ideal ones) of these homogeneous systems or at small differences in symmetry 
of mutual solubility or on their compensating. In the vicinity of the binary system 
1-3 holds that the slope or'the tie-line is positive as far as (X 2)O,2-3 < (X 2)O,1-2 and 
vice versa. Also this fact will appear to be conceivable if we realize that on the critical 
isotherm at the point (~2)O' the critical point would be and the slope of tie-lines would 
be infinite. Similar conclusions could be drawn in the opposite case if the system 1- 2 
dominated. In case of further tie-lines the second homogeneous system may make 
its way and the inclination of tie-lines can even turn over. These facts can be watched 
in Fig. 6 representing the system in which (X 2)O,2-3 = 0'2, (X 2)O,1-2 = 0,8. The slope of 
conodes is positive at first (small x 2 ) then successively runs through the maximum, 
decreases and through zero passes to negative values. Such a course is brought 
about by considerably differ~nt values of (x2)o for both homogeneous systems at their 
identical non-ideality (( Gll)xO,1-2 = (Gll)xo,2-3)' 

The given rules can be demonstrated not only by these model computations but 
also by actual systems. ' The fact that the extent of heterogeneous region is above all 
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(unless we consider strongly non-ideal homogeneous systems) a function of the hetero­
geneous system, follows from Fig. 7. There the binodal curves for the water ,(1)­
-benzene(3)-organic solvent(2) systemsl6 are plotted. Except four solvents (acetal­
dehyde, acetonitrile, l,4-dioxane and acetone), the maximum content of the organic 
solvent on the binodal curve is in comparatively narrow range (X2)max E (0·38; O·SO). 
A larger heterogeneous region in systems with acetonitrile, l,4-dioxane and acetone 
can be explained by the fact that these three substances form much more non-ideal 
solutions with water7 than e.g. ethanol and, moreover, by shifting the position of the 
Gll minimum towards higher concentration of organic solvent, which contributes 
to the shift of binodal curve towards organic solvent. A similar effect manifests itself 
evidently with acetaldehyde but the present vapour-liquid equilibrium experimental 
data do not allow to determine Xo and (Gll)xo with sufficient accuracy (at Xl = O'S, 
Gll is O'S to 1'0). 

The effect of unequal value of (Gll)xo on the inclination of tie-lines can be shown 
by an example of the water(1)-benzene(3)-ethanol(2) and water(1)-benzene(3)-2-
propanol(2) systems in Fig. 8. In the first ternary system, the ethanol(2)-benzene(3) 
binary system is more nonideal than water(1)-ethanol(2) system and the tie-lines 

2 

3~-----------7~----------~ 

FIG. 7 
Course of binodal curve in systems water(I)­
-organic solvent(2)-benzene(3). 1 aceto­
nitrile, 2 acetaldehyde, 3 1,4-dioxane, 4 ace­
tone, 5 butyric acid, 6 acetic acid, 7 I-pro­
panol. Binodal curves with the following 
substances fall into the hatched band: 
2-propanol, 2-methyl-2-propanol, pyridine, 
a-picoline, ethanol, dimethylformamide, mor­
pholine 
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FIG. 8 

Illustration of the effect of non-ideality 
of the homogeneous systems 1-2 and 2-3 
on the inclination of tie-lines in systems 
water(1)-benzene(3) with ethanol and 2-pro­
panol 
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are also inclined to the system (2 - 3). In the second case, on the contrary, the water 
(1)-2-propanol(2) binary system is more non ideal than 2-propanol(2)-benzene(3) 
system and the tie-lines have an opposite inclination. 

Correlation of the Liquid-Liquid Equilibrium Data on Using the Gll(x1) Course 

The calculations carried out in the foregoing part have been without any direct rela­
tion to reality. Now we will apply the results given above to three concrete systems: 
a) acetoni trile(1 )-benzene(2 )-n -heptane( 3) (ref. 19), b) water (1 )-ethanol( 2 )-benzene­
(3) (ref. 17), c) water(1)-2-propanol(2)-benzene(3) (ref. 18). 

For the computations we made use of the UNIQU AC equation20 

N N 

GE/(RT) = L Xi In (¢dXi) + (z/2) L qiXi In (8d¢i) + 
i= 1 i= 1 

N N 

- L qiXi In L 8j 'rji , 
i=1 j=1 

N N 

¢i = rixd L rjxj , 
j=l 

8i = qixd L qjXj , 
j=1 

and the previously presented modified Wilson equation (5). 

(8) 

(9) 

When computing the correlation equation parameters we proceeded so that in 
binary homogeneous systems the course of G11(X1) (ref.7

) was found on the basis 
of experimental vapour-liquid equilibrium data and the parameters of the Gll(x 1) 

minimum were determined graphically. On the basis of these values, two sought 
parameters (aij and/or 'rij in the UNIQU AC equation, Aij in the modified Wilson 
equation) were determined by solving the system of equations (6). The parameters 
in the heterogeneous binary system 1- 3 were found from the mutual solubility 
of substances 1 and 3 by solving the system of equations (7). The parameters of the 
UNIQUAC equation are fully determined by these data. In case of the modified 
Wilson equation, the computations were carried out for several values of b13 • 

Acetonitrile(1)-Benzene(2)-n-Heptane(3) System at 45°C 

On the basis of experimental data 19,21 we determined for the acetonitrile( 1 )-benze­
ne(2) and benzene(2)-n-heptane(3) these values: (X2)O,1-2 = 0·52 ± 0'02, (Gll)xo = 

= 2·20 ± 0·03 and (X2)O,2-3 = 0·53 ± 0'05, (Gll)xo = 3·1 ± 0'1, respectively. 
From these values and from mutual solubility, x~ = 0'1016, x~ = 0·9372 (ref. 19

), 

the parameters given in Table I were calculated. The binodal curve determined on the 

Collection Czechoslovak Chern. Commun. [Vol. 46] [1981] 



Liquid-Vapour Equilibrium 3011 

basis of these parameters is plotted in Fig. 9. It is evident that the heterogeneous region 
is larger than it corresponds to the experimental data. The curve determined by An­
derson and coworkers8 is given in Fig. 9 as well. They found the parameters on the 
basis of vapour-liquid and liquid-liquid equilibria. It can be seen that the agreement 
is better but the modelled heterogeneous region is a little larger than reality in the 
vicinity of the critical point. 

The parameters of the modified Wilson equation are presented also in Table I. 
In the acetonitrile(1)-n-heptane(3) binary system, three values of b13 were used and 
the result is evident from Fig. 10. The lower values of b13 diminish conspicuously 
the extent of heterogeneous region (also the Gll(xl) minimum is increased in the 
heterogeneous region from -1,65 through -1·25 to - 0'62). At b13 = 0·4 we get 
very good agreement with the experimental data. In the acetonitrile(1)-benzene(2) 
system we also reached very good agreement in the azeotrope composition (Yaz = 
= 0'463, ref. 19; Yaz = 0·457 (?), ref. 21 ; Yaz = 0'466, ref.22; Yaz,calc = 0'477). Similar­
ly, also the deviation in composition of the heterogeneous azeotrope in the aceto­
nitrile(1)-n-heptane(3) system was very small (Yaz = 0'6456, ref. 19; Yaz,calc = 0'6505). 

The liquid-liquid and liquid-vapour equilibria in this system have been correlated 
recently by Schult and coworkers 13 with good results by another modification of the 
Wilson equation 12. 

Systems Water(1)-Benzene(3) with Ethanol and 2-Propanol 

Smoothed coordinates of the Gll(x1) minimum of homogeneous binary systems 7 

are presented in Table II . .The values of Xo and (Gll)xo for the first two systems are 

TABLE I 

Parameters of binary systems on applying the UNIQUAC and modified Wilson equations in the 
acetonitrile(1)-benzene(2)-n-heptane(3) system at 45°C 

Curve i-j (x2)O or x? (Gll)xo or x? ajj or Ajj 

9a 1-2 0·48 2·20 - 7·63 K 
1-3 0·1016 0·9372 17·1 K 
2-3 0'53 3·10 -60'7 K 

10a 1-2 0·48 2·20 0'6738 
1-3 0·1016 0:9372 0'8926 
2-3 0'53 3·10 1'090 

10b 1-3a 0·1016 0·9372 0'3464 

10e 1-3a 0·1016 0'9372 0·1466 

a The cases 1-2 and 2-3 are the same as for the curve 10a. 
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aj j or Ajj 

159·1 K 
570·7 K 
120·1 K 

0·5087 
0'3846 
0'5205 

0·2123 

0'09567 

o 
2 
o 

0'4 



3012 Novak, Matous, Sobr, Pick: 

subject to an absolute error about 0·03 and 0'08, respectively. In the mixtures with 
2-propanol there is a greater error (approximately double). The values in the water(l)­
-ethanol(2) system were determined on the basis of the correlation by Larkin and 

TABLE II 

Coordinates of the Gll(x1) minimum in the systems of ethanol and 2-propanol with benzene 
and water 

System 

Water(1 )-ethanol(2) 

Ethanol(2)-benzene(3) 

Water(1)-2-propanol(2) 

2-Propanol(2)-benzene(3) 

2 

0'5 05 

FIG. 9 

Application of the UNIQUAC equation 
to the acetonitrile(1)-benzene(2)-n-hepta­
ne(3) system at 45°C. Q course computed 
on the basis of Gll(x1) mini,ma, b course 
computed on the basis of the Anderson 
and Prausnitz parameters, c experimental 
data 

t,OC (x2)O (Gll)xo 

25 0·35 1·23 
50 0·35 1'42 
25 0·32 0'60 
50 0'39 0·90 
25 0'30 0'73 
50 0·30 0·80 
25 0'43 1·06 
50 0'43 1·30 

2 

0'5 0'5 

3L-~--------~~--------~~ 

FIG. 10 

Application of the modified Wilson equation 
to the acetonitrile(1)-benzene(2)-n-hepta­
ne(3) system at 45°C for different values h13 • 

Q b13 = 2, b b13 = 1, C b13 = 0'4, d experi­
mental data 
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PembertonZ3
• The data on the solubility of water and benzene were taken from the 

work by Polak and coworkers24 (x~ = 0·003, x~ = 0·9996). 

When the calculations were carried out in the water(1)-ethanol(2)-benzene(3) 
system with the UNIQUAC equation and with the parameters determined on the 
basis of the minimum of G11(Xl) curve, the system was represented as a three-phase 
one, which does not correspond to the reality - see Fig. 11 (and also ref. 1 0). On 
using higher values of (G11)xo we succeeded in removing this discrepancy. When 
using an increased mutual solubility of benzene and water (to five times as much), 

TABLE III 

Parameters of binary systems on applying the UNIQUAC and modified Wilson equations 

Curve i-j (x2)0 or x? (Gll)xo or x? Ojj or Ajj 0ji or Aji bjj 

Water(I)-ethanol(2)-benzene(3) 

110 1-2 0·35 1·23 103·9 K 41·9 K 
1-3 0·015 0·998 203·2 K 576·4 K 
2-3 0·32 0·60 -83·6 K 428·7 K 

11b 1-2 0·35 1·42 122·5 K 17·8 K 
1-3 0·015 0·998 203·2 K 576·4 K 
2-3 0·39 0·90 -64·4K 369·2 K 

120 1-2 0·35 1·23 0·6904 0·1460 0 
1-3 0·003 0·9996 0·00838 0·00111 0·6 
2-3 0·32 0·60 0·0842 0·4536 0 

12b 2-3a 0·39 0·90 0·1675 0·4845 0 

Water(I)-2-propanol(2)-benzene(3) 

130 1-2 . 0·30 1·1 20·8 K 163·8 K 
1-3 0·015 0·998 203·2 K 576·4 K 
2-3 0·43 1·4 -15·5 K 194·0 K 

140 1-2 0·3 0·6 0·4776 0·0723 0 
1-3 0·003 0·9.996 0·01174 0·001552 0·8 
2-3 0·43 1·3 0·2646 0·5507 0 

14b 1-3b 0·003 0·9996 0·00838 0·00111 0·6 
14c 1-3b 0·003 0·9996 0·003075 0·0004084 0·2 

a The cases 1-3 and 1-2 are the same as for the curve 120; b the vases 1-2 and 2-3 are the 
same as for the curve 140. 
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an on the whole satisfactory agreement with experiment was reached - see Fig. 11. 
The corresponding parameters of the binary systems are given in Table III. 

It would be certainly possible to attain better agreement with experiment by 
a further shifting of minima in both binary homogeneous systems but it was not 
carried out any more. When applying the modified Wilson equation, it proved that 
in the water(1)-benzene(3) system it was possible to start from the experimental 
values on mutual solubility if we used the value b13 = ' 0·6. The computed curve with 
the parameters obtained on the basis of values in Table II is plotted in Fig. 12. The 
inclination of tie-lines in the vicinity of the critical point is too large (curve a) and 
was considerably improved on using the higher value (Gll)xo = 0·90 in the ethanol­
(2)-benzene(3) system which corresponds to the temperature of 50°C. The agreement 
of calculated and measured values in this second variant is very goed. Only the course 
of binodal curve in the vicinity of the binary system ethanol-water remains unsatis­
factory. 

The best agreement in the water(1)-2-propanol(2}-benzene(3) system on using 
the UNIQU AC equation was attained when the parameters given in the second part 
of Table III were used. It was necessary to take the mutual solubility of benzene and 
water five times as much than corresponds to tne experiment. Although the values 
(Gll)xo were increased as well as the mutual solubility of water and benzene, the 
calculated heterogeneous region exceeded the experimental one (Fig. 13). The com­
putation was again complicated by the occurrence of three-phase region, which was 

2 

3~----------~----------~ 

FIG. 11 

Application of the UNIQUAC equation 
to the water(1)-ethanol(2)-benzene(3) system 

. at 25°C. a, b calculated curves, c experimental 
data 

j\\ 
0·5 0·5 

3~----------~----------~ 

FIG. 12 

Application of the modified Wilson equa­
tion to the water(1)-ethanol(2)-benzene(3) 
system at 25°C. a, b calculated curves, 
c experimental data 
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overcome by an increase of (Gll)xo in the 2-propanol(2)-benzene(3) system above 
the value 1·3. 

On applying the modified Wilson equation it was found that it was not necessary 
to change the previously obtained parameters in the water(1)-benzene(3) system or 
the value b13 to obtain a satisfactory representation of the binodal curve. For a good 
representation of tie-lines (Fig. 14) it was necessary to alter the parameters of binary 
systems (Table III). The altered values, however, still fall into the range delimited 
by experimental errors. 

DISCUSSION 

It is evident from the foregoing analysis that the course of Gll(x1) of corresponding 
binary systems influences considerably the extent of heterogeneous region as well 
as the inclination of tie-lines in ternary system. On the basis of the knowledge of 
Gll( x 1) in binary systems it is possible to judge whether the prediction of the liquid­
-liquid equilibrium in ternary system based on binary data only will be or will not be 
possible. For instance, the prediction of liquid-liquid equilibrium appears to be very 
difficult in case of strongly non-ideal binary systems because low values of GIl 
are not usually determined in homogeneous systems with such an accuracy which 
is necessary with regard to its great effect on binodal curve (Fig. 3). The possibi.lity of 
prediction can be still made more difficult in the cases when both homogeneous 

2 

3~----------~------------J 

FIG. 13 
Application of the UNIQUAC equation to the 
water(1)-2-propanol(2)-benzene(3) system at 
25°C. a calculated curve, b experimental 
data 
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FIG. 14 

Application of the modified Wilson equa­
tion to the water(1)-2-propanol(2)-benze­
ne(3) system at 25°C for different values b13 . 

a b13 = 0'8, b b13 = 0'6, C b13 = 0'2,0-0-0 
experimental data 
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systems are strongly non-ideal. On the other side, the possibility of a good prediction 
shows in the cases when one binary system is weakly and the second mildly non­
-ideal and if the heterogeneous binary system is described well (e.g. from the cor­
relation of other heterogeneous systems). 

The modified Wilson equation proved to be good in applications, thanks to its high 
flexibility which is a consequence of introducing the third parameter when describing 
the binary heterogeneous system. The flexibility of this equation manifests itself 
favourably in the fact that the difficulties are removed which have often occurred8

•
14 

on correlating the systems with relatively small heterogeneous regions. 

The present results show that the third parameter used represents 10-15% of the 
value following from the application of regular ,solution theory. For expressing the 
mutual solubility in the case of the regular solution it holds 1 .25 

(10) 

where Xl < 0·5 expresses the mole fraction of component 1 in the equilibrium phase 
rich in component 2. So e.g. in the acetonitrile(1)-n-heptane(3) system we woulq get 
(see Table I) 1) = (2'73 + 3'09)/2 = 2·91 whereas the optimum h13 determined on 
the basis of data on liquid-liquid equilibrium in the ternary system was h13 = 0-4 
( ~ 14%). In the water-benzene system (Table III) the corresponding values amount 
to 1) = (5'84 + 7'82)/2 = 6·8 and h13 = 0·6 (~9%). 

LIST OF SYMBOLS 

A jj , aij 

b jj 

D 
G 
Gll 

parameters of Eq. (5) or (9), respectively 
parameter of Eq. (5) 
determinant defined by Eq. (3) 
Gibbs' (molar) energy 

'= fP(GM/RT)/oxI, second derivative of Gibbs' energy with respect to com­
position 

(Gll)xo, (Gll)xo.2 _ 3 ordinate of Gll(x1) minimum and of minimum of second derivative 

i, i 
M 
N 
p 

q 

R 
r 
T 

of Gibbs' energy in system 2-3, respectively 
compon'ent, summation index 
(superscript) mixing quantity 
number of components 
pressure 

parameter characterizing surface of molecule 
gas constant 
parameter characterizing volume of molecule 
temperature 
coordination number (z = 10 in Eq. (9» 
mole fraction 
mole fraction of component 1 in coexisting phases of binary heterogeneous sys­
tem 1-3 
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XO' (X2)O , 2 - 3 coordinates of minimum of dependence Gll(xl) or mole fraction of component 
2 in mixture for composition which corresponds to minimum of second derivative 
of Gibbs' energy with respect to composition in system 2-3, respectively 

¢, e, r quantities defined in Eq. (9) 
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